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Abstract— We introduce Structure from Action (SfA), a
framework to discover 3D part geometry and joint parameters
of unseen articulated objects via a sequence of inferred inter-
actions. Our key insight is that 3D interaction and perception
should be considered in conjunction to construct 3D articulated
CAD models, especially for categories not seen during training.
By selecting informative interactions, SfA discovers parts and
reveals occluded surfaces, like the inside of a closed drawer. By
aggregating visual observations in 3D, SfA accurately segments
multiple parts, reconstructs part geometry, and infers all joint
parameters in a canonical coordinate frame. Our experiments
demonstrate that a SfA model trained in simulation can
generalize to many unseen object categories with unknown
kinematic structures and to real-world objects. Empirically, SfA
outperforms a pipeline of state-of-the-art components by 25.0
3D IoU points. Code and data will be publicly available.

I. INTRODUCTION

For robots to be useful out-of-the-box, they must han-
dle a variety of objects—even those that are unfamiliar.
Beyond rigid objects, articulated objects, like drawers and
microwaves, are of particular interest [1], [29], [12], es-
pecially in household use-cases. For tasks involving novel
articulated objects, recovering 3D articulated CAD models
(e.g., URDFs) is a promising starting point, as they are
immediately useful in task-specific planning pipelines [42],
[51, [6], [7], [28]. For instance, recovering models of kitchen
drawers can lay the foundation for downstream planning to
retrieve objects within them. To discover the structure of
objects beyond training categories, there is evidence that in-
teraction is critical [12], [51]. Informative interaction allows
an agent to expose kinematic constraints (e.g., prismatic or
revolute joints) and observe occluded part geometry.

Inferring joints, kinematic constraints, and the full 3D
structure of articulated objects is a complex task that involves
tackling a diverse set of challenges:

o Inferring informative interactions. Given unstructured
point clouds, an agent must act intentionally to expose
structures. Random actions are insufficient as they may
move the object rigidly or not at all, giving no signal about
articulation. Similarly, repetitive actions on single parts
can lead to an incomplete recovery of parts and joints.

o Persistent parts aggregation in 3D. From an observed
sequence of interactions, it is necessary to discover new
parts and track existing parts, even in the presence of
severe occlusion. If an agent closes a drawer, the part
should persist within the object representation, even when
it is not directly visible in the following steps.

o Cross-category generalization. The algorithm should
handle object categories unseen during training, with
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Fig. 1.  Structure from Action. Our framework discovers an object’s
structure through a sequence of 3D interactions. The resulting structure
includes a) part segmentation, b) 3D reconstruction for each part, and c)
joint parameters, together describing d) a 3D articulated CAD model.

unknown kinematic structures.

These challenges have motivated simplifying assumptions
in prior works. For example, Gadre, et al.[12] relaxes the
problem to a 2D setting, not attempting to reconstruct 3D
structure. Jiang, et al.[17] consider a single heuristic interac-
tion step, which is insufficient to recover multiple parts and
joints. In this work, we relax these assumptions and introduce
an approach for the problem of constructing articulated CAD
models of 3D objects using interactions.

To address these challenges comprehensively, we intro-
duce Structure from Action (SfA) to expose the kinematic
structure of objects through interaction. Our key insight
is that 3D interaction and perception must be considered
in conjunction to construct 3D articulated CAD models.
Specifically, SfA learns 1) a sequential interaction policy to
expose the object’s hidden part geometry and kinematics,
2) a dynamic part reconstruction module that segments and
completes the object parts by aggregating visual observa-
tions, and 3) a joint estimation module that infers object
joint types and parameters from the observed motion. The
final output of the system is a 3D articulated CAD model of
the observed object as seen in Fig. 1.

We evaluate SfA on unseen object instances and categories
from the PartNet-Mobility [8], [30], [49] dataset. Our results
validate the following contributions:

« An interaction policy that is capable of learning informa-
tive interaction strategies in 3D to recover 3D articulated
object structure.

o A learnable perception module that aggregates visual
observations on-the-fly to improve the accuracy for part
reconstruction and joint estimation.



TABLE I
COMPARISON TO PRIOR WORK.

Actions Object Structure
Method Inferred 3D | Recon. Seg. Joint Multi.
Where2Act [29] v v X X X X
UMP-Net [51] v v X X 4 X
Ditto [17] X - v v v X
AtP [12] v X X 4 X v
SfA (Ours) | v | v v v/ v/

o A single SfA model (both the interaction and perception
modules) trained in simulation can generalize to many un-
seen object categories with unknown kinematic structures,
and to real-world objects.

II. RELATED WORK

Recently, interactive perception with articulated objects
has gained renewed interest. As an overview, we contrast
our method with recent work in Tab. I. Our goal is to
recover objects’ articulation structure, including objects’ part
reconstruction (Recon.), segmentation (Seg.), and joints esti-
mation (Joint). An algorithm should also handle objects with
multiple (Multi.) parts. While prior work tackles some of
these challenges, SfA presents a comprehensive framework
addressing all facets of the problem.

Articulated object manipulation. Articulated objects are
an important class of objects for manipulation, and the
community has come a long way to make datasets and
benchmarks to facilitate research in this direction [8], [30],
[27], [49], [32], [22]. There is a line of work tackling the
problem of interacting with articulated objects to move their
parts [29], [48], [28], [40]. Some work [24], [3] uses dual-
arm manipulators to enable a more complex interaction. This
work mostly focuses on interacting with the purpose of com-
pleting a high-level task (such as opening cabinets [40], etc.).
Our goal is to learn to interact with objects with the goal
of discovering joints, parts, and dynamics of articulation.
Eisner, et al. [11] propose a vision-based method to predict
the flow and articulated motions of an object. However, they
do not infer part segmentation or joints. Xu, et al. [51]
propose a single image-based policy network to recover joint
axes, but they do not attempt to recover parts.

Perception from passive observation. Prior work has used
a variety of methods to recover object joint constraints, such
as using dense pose fitting [10], adapting neural radiance
field [34], inferring kinematic graphs [2], and semantic seg-
mentation [47]. Mu, et al. [31] propose a model to generate
shapes of articulated objects at unseen angles. These methods
require prior knowledge of the object or are category-
dependent. Moreover, researchers have addressed the part
segmentation and structure recovery from non-sequential
data (e.g., a single view or point cloud) [55], [45], [44], [14],
[20], [1], [21], [36], [37], [46], [13]. In contrast, our method
uses a sequence of data, which enables discovering parts
of unseen object categories without prior knowledge. The
community has tried to recover and track object structures
from motion cues between sequential observations [15], [16],

[23], [4], [52], [501, [54], [39], [26], [?], [41], [33], [53],
[38], [17], [55]. However, these methods rely on motion
existing in the scene to provide sufficient perceptual cues
of part articulation. Our method uses previous observations
to predict actions that result in informative motions.

Perception from the interaction. Classical approaches use
hand-tuned actions to create informative motion for down-
stream perception [43], [18], [35]. In contrast, we use a
generalizable approach to predict the actions even on novel
categories. Similarly, more modern approaches focus on
perception, using scripted robot actions [17]. This method
also only applies to one stage and fails to identify more than
one part. Kumar, et al. [19] recover the mass distribution
of the articulated objects using interaction, but they do not
recover joints or parts. Gadre, et al. [12] proposed a method
that learns both interaction and perception. However, they
only consider 2D perception, limiting the approach to work
only for revolute joints visible from the top-down view. In
contrast, by using 3D actions and perception, we are able
to consider both revolute and prismatic joints and relax
restrictions on camera positioning. Recently, Lv, et al. [25]
proposed SAGCI, an interactive perception method for ar-
ticulated object structure discovery using a differentiable
physics engine. However, it does not explicitly completes
part geometry using history observations, nor persistently
represent the part geometry during occlusion, which are
functionalities supported by SfA.

III. STRUCTURE FROM ACTION

We introduce Structure from Action (SfA), a learning
framework to interact with articulated objects to discover
their parts and joints. Our framework is agnostic to object
category and to the number of parts and joints that constitute
an object. SfA, then, can generalize to novel categories.
Given an observation Py, the initial RGB point cloud before
any interaction, SfA infers actions to reveal objects’ parts
and joint structure (§ III-A). Then by observing the object
motion, SfA discovers and reconstructs the object part using
a part aggregation module (§ III-B) and infers joint param-
eters using a joint estimation module (§ III-C). Over several
timesteps, the output of the algorithm is an articulated CAD
model consisting of 3D part meshes along with the revolute
and prismatic joints that connect them (§ III-D). Fig. 2 give
an overview of our approach.

A. Learning to Interact with Articulated Parts

The first step of SfA is to infer informative actions to re-
veal an object’s kinematic structure. An action is informative
if it isolates an individual part, instead of moving the whole
object or multiple parts. Furthermore, an informative action
should attempt to move new parts, instead of interacting with
the same part repeatedly over many timesteps.

Action representation. Inspired by AtP [12], we assume a
bimanual embodied agent, which uses two suction grippers to
simultaneously hold and push different parts of the object.
These interactions allow the agent to isolate a single part
of the object and are particularly useful for small objects
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Fig. 2. Approach overview. Given an RGB point cloud observation of an unknown articulated object, SfA infers and executes a sequence of informative
actions (§ III-A), discovers and reconstructs parts (§ III-B), estimates joint parameters (§ III-C), and outputs an articulated 3D CAD model of the object

(§ 1I-D).
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Fig. 3. Learning Interaction Policy. (/eft) During training, the 3D scene

flow is used to supervise the action directions (green). For a timestep, areas
where flow is zero are assumed to be good hold locations (red). (right)
Inferred candidate push actions conditioned on a sampled hold action.

without a fixed base. However, unlike AtP, we consider a
continuous 3D action space instead of a discrete 2D action
space. This provides the flexibility to handle parts rotating
and sliding about arbitrary axes. We represent a hold as a 3D
point location. We define a push to be a 3D point location and
3D direction along which an agent applies a fixed force. This
formulation makes no explicit distinction between pulling
and pushing. For consistency, we refer to the actions as push.
In terms of the mechanics of pulling, we assume that the
agent has access to a suction gripper that can be used, for
example, to pull out a drawer.

Action inference. The input to the action inference module
is the current object observation P; and part history voxel
volume H;. The object observation is represented as a point
cloud P, € R2%48x9  formed by farthest point sampling over
posed multi-view RGB-D images after ground plane removal.
The 9 channels encode the point’s XYZ location, 3D surface
normal, and RGB color. A part history volume #; encodes
the agent’s current belief about the object’s part segmentation
and is spatially aligned with P, (see §III-B for more details
on H;). We wish to associate each point with its current
segmentation prediction. Hence, we concatenate each point
in P, with its corresponding value from 7, before passing
the points into the action inference module. Action inference
is hence conditioned on the current belief about the part
segmentation. Intuitively, we want inferred actions to push
parts that are not already confidently segmented so that the
downstream perceptual model (§III-B) is able to discover
these new parts.

The action inference module is composed of two point

transformer encoder-decoders [56], the first to infer a hold
score for each point and the second to infer a push action for
each point conditioned on a sampled hold location. To predict
the hold action, the network infers a score for every point.
A higher score indicates a better hold location. To predict
push prediction conditioned on the selected hold action, we
compute the point-wise distance to the selected hold location
and use it as additional input to the push network. The push
network output the flow vector for each input point, where
the vector directions indicate the inferred push directions and
the magnitude indicates the push score of the action. The
action with the highest score is selected for execution. At
inference, the hold and push are executed in tandem by the
agent.

Supervision and dataset creation. We observe that 3D
scene flow on a part implies effective push actions on that
part. The direction of a good push action is aligned with
flow vectors, while the magnitude of each flow vector gives
a notion of how effective a push is. Take for instance a
door on a cabinet that swings open. Locations with larger
flow magnitudes correspond to points farther away from the
revolute axis. Interacting with such points is more likely to
create discernible motion given a push action with a fixed
force. Similarly, points with no movements (i.e., no flow) can
be used as candidates for the hold action. While all points
without flow are not always equally good for holding, our
results suggest that this approximate supervision is sufficient
in practice. To ensure push action affordance consistency, we
normalize the 3D scene flow vectors before using them for
supervision during training.

Based on this intuition, we generate a supervised dataset
using the PyBullet [9] simulator and URDF assets from
PartNet-Mobility [30]. We move a single part per step by
changing its simulation joint state directly. Once a part has
moved we consider it discovered. We repeat this process for
five timesteps per object, moving parts that have not been
discovered before moving parts that have already moved. At
each timestep, we save the point cloud generated from posed
RGBD views, scene flow per point, and the ground truth part
labels, with a single label for undiscovered parts and unique
labels for each discovered part. In essence, once a part has
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Fig. 4. Dynamic part reconstruction. completes the part geometry by
aggregating all past observations in a spatially consistent manner.

moved, we generate a categorical label for it.

Training. By using 3D flow as supervision and ground
truth part labels as input, the interaction model learns to
first interact with parts that have not been moved before
interacting with discovered parts. With this supervision, the
push network is trained to predict 3D scene flow using MSE
loss, and the hold network is trained to label points without
motion, which can be learned with binary cross-entropy loss.

B. Learning Persistent Part Aggregation

The goal of the part aggregation module is to construct a
history volume H; that encodes the agent’s current belief of
the object structure (i.e., segmentation and geometry) from
all the past observations. Performing such part aggregation
is challenging since it requires the algorithm to establish
reliable correspondences between the part before and after
the movement. Here, point-to-point correspondences are in-
sufficient as large portions of the surface may disappear (e.g.,
a drawer as it closes). To tackle these challenges, we propose
a learning-based part aggregation module.

We choose to use volumetric representation to allow
the network better leverage the spatial alignment between
different observations and the history volume. We represent
H, as a 3D volume H, € RV *96x96x96 "which is aligned to
the current observation in the world frame. Different from the
point representation used in Action inference, which requires
high precision of surface locations, the history aggregation
module should leverage the spatial alignment between dif-
ferent observations and should infer the occupancy of parts
across interaction steps. Hence a volumetric representation
that tags regions of space is beneficial. The N channel
dimensions per spatial location store a distribution over part
indices, with the first channel representing free space. A large
probability in the ¢-th channel of a voxel indicates a high
likelihood of this voxel belonging to the i-th part. We allow
the max number of parts to be six.

Ho is initialized with all occupied voxels from the initial
point cloud observation P, assigned to the first part with
probability 1 and all other channels 0. We track assigned and
unassigned channels across interaction steps with a pointer
k that indexes the next channel to be assigned. Over a few
interactions Hy is refined to more accurately capture the
various parts that make up the object. When a new part
is discovered, the voxels associated with the new part are
assigned to channel k, k is incremented. If a discovered
part (say i-th part) gets moved again, the part aggregation
module updates the occupancy of i-th channel to reflect
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Fig. 5. Joint Inference. (Left) Revolute joint position and axis orientation
votes. (Right) Prismatic joint orientation votes.

new observations, such as to complete its geometry as more
surfaces are observed (Fig. 4 2nd step) or preserve its shape
when being moved into occlusion (Fig. 4 3rd step). The
model also learns to copy over labels of the stationary parts
to maintain parts’ permanence across interaction steps.

Part aggregation network. The aggregation network is
modeled as 3D CNN. It takes the history H;_; and voxelized
point cloud V;_1,V; as input, and outputs a new history
H.. V, carries the same information as the point could
observation P;, but in a volumetric format. This 3D volume
V, € R96x96X96x7 j5 centered around the first observation
point could Py, encompass 2 X 2 x 2 3D space (unit up to
scale). The 7 channel encodes the object’s occupancy (1D),
surface normal (3D) and color (3D). The network and trained
with voxel-wise cross-entropy loss between the predicted and
target volume.

Supervision. We construct the target history volume H$'
together with the offline data generation process described in
§III-A. At each step ¢, the target volume includes channels
for the parts moved by the agent and allocates new channels
if new parts are observed. For each part channel, the target
volume will include all surfaces that the camera has observed
in any of the past and current steps € (0,¢], including
surfaces that get occluded in this step. A voxel that has never
been observed will be ignored. Since H{' is generated with
a consistent part index across steps, it naturally encourages
the network to keep track of part identity over time after the
discovery step. However, we do not require it to perform
voxel-level correspondence tracking. Moreover, since H$'
introduces part geometry incrementally for each step (only
after the surface is observed). It allows the network to learn
how to “aggregate” existing observations without the need
to “guess” the unobserved part geometry, which allows the
network to generalize to new object categories. Finally, since
the H$' preserves the part geometry once it is observed,
it allows the network to learn object permanence during
occlusion. As a result, this part aggregation module is able
to discover, track, and reconstruct the object part geometry
using a single network.

C. Joint Inference

Apart from the part information, it is also critical to infer
the object’s joint parameters to fully recover its kinematic
structure. To do so, we designed a joint inference module
that infers the object’s joint type and parameters from two
consecutive object observations P;_; and P, with object



motion. If no part has moved, this interaction step will be
ignored for joint prediction.

With the learned action policy (i.e., simultaneously hold-
ing and pushing different parts), the agent tries to move a
single part at each step. This interaction strategy greatly
simplifies the joint inference model, which only needs to
consider the case of one part being moved and linked to
the rest of the object via one joint. If more than one part is
moved, the model will treat all moving parts as one common
part and predict one set of joint parameters, this error could
be fixed with future interaction steps. Lastly, we assume that
all movable parts are connected to the base link via a joint,
with the base link always labeled 1 in the parts segmentation
volume.

Joint inference. The joint inference module (modeled by
a 3D CNN) is inspired by [17], and the joint parameter
representation is inspired by [21]. The inferred joint pa-
rameters are represented as one volumetric output J with
three components: 1) Jiype € RI*96%96x9 for joint type
trained with BCE loss. 2) Juys € R3X96x96x96 " gives per
voxel predictions of the joint axis direction, trained with
cosine similarity loss with groundturth value. 3) Jpos €
R1X96x96X96 " ojyes per voxel predictions of the position
of the revolute joint axis, which is represented using the
distance between each voxel to its corresponding joint axis
position, trained with MSE loss.

During training, we use the ground truth volumetric parts
labels and only supervise on the output voxels of the moved
part. From these predictions, we can compute the joint
parameters by averaging the predictions over all voxels
labeled as the moving part inferred by the part aggregation
module. To track multiple joints over several steps, we
maintain a dictionary where the key is the part label inferred
by the part aggregation model and the value is a list of
{Jiypes Jaxis; Jpos}. If a part is seen more than once, the
inferred joint parameters will be appended to the existing
list in the dictionary. The final joint parameters will be the
median of all inferred values over several interaction steps.

D. Constructing an Articulated CAD Model

Given the part volume 7, the last step is to extract the 3D
mesh for each part. Each entry in H; encodes a probability
distribution over parts. We observe that computing an argmax
over H; can result in artifacts. To circumvent this problem,
we directly deal with the continuous probability values to
extract a smoother surface. First, we compute the inverted
probability volume H, = 1 — H,, where a value closer to 0
indicates higher probabilities of the surface. Treating H, as
a distance volume, we can apply marching cubes to extract
the zero-crossing surface. Since H, consists of continuous
value, we can further upsample the volume (i.e., from 963
to 288%) to improve the mesh quality. Finally, by combining
the 3D part mesh with the estimated joint parameters (§I1I-
C), we can generate a consolidated URDF file describing
the articulated 3D CAD model as visualized in Fig. 1 d).
For more details please refer to the supp. material.

IV. EXPERIMENTS

We train a single perception and interaction model and
evaluate it on 48 unseen instances from 10 categories and
77 instances from 7 unseen categories. When evaluating our
method in simulation, an agent executes actions directly in
our PyBullet [9] environment — following the definition of
interactive perception. For the real-world proof of concept,
we generate qualitative results for the perception component
of our pipeline. Please refer to the supp. material for more
details on the simulation environment and dataset.

Real-world Implementation: To demonstrate the feasi-
bility of SfA in the real-world setting, we set up a
single-arm tabletop environment, as shown in Fig 6. The
robot arm is equipped with a cylindrical pusher, which
moves the object parts based on the inferred actions.
The environment has 4 Intel RealSense RGBD cameras,
together capturing a RGB point cloud of the object.
The interaction and 3D reconstruction results are shown
in this video: https://sites.google.com/view/
sfa-rebuttal-site/home. We believe the real-world
results show that SfA is a promising step in future interactive
perception and robotics research.

Metrics: We first evaluate the the effectiveness of the in-
teraction policies independent from the perception model by
measuring optimal action ratio = # optimal action/ # total
action. Following Gadre, et al. [12]’s definition, action is
optimal if it successfully moves a part that has not been
discovered. If all parts are discovered, moving any part is
considered optimal. For a single-step policy (i.e., UMP-Net
[51]), the action is considered optimal as long as it triggers
part movement.

The performance of object structure discovery is measured
by following two aspects: 1) Part segmentation and re-
constructions. Evaluated by part-wise 3D Intersection over
Union (IoU) between predicted and ground truth part geom-
etry. 2) Joint Inference. The accuracy of joint estimation is
evaluated by 1) classification accuracy (between prismatic or
revolute). 2) axis orientation error in degree. 3) axis position
error in normalized scale (revolute joint only). All objects
are scaled to fit in a 2 X 2 X 2 cube in this dataset, and
position error is evaluated with respect to this scale.

Baselines and Ablations: We test and compare with the
following alternative interaction or perception module to
study the efficacy of our system design:

e GT-Act (Oracle): to evaluate the perception module’s
performance upper bound, we test our perception module
with the optimal interaction policy computed based on
the ground truth state.

« UMP-Net [51], an interaction policy that aims to change
the objects’ joint state but not discover parts. This
method might fail to produce an effective action when
the interactable part is not observed in view.

« Ditto [17], a perception network that infers object’s part
segmentation and joint parameters from a single-step
interaction. We combine Ditto with the other interaction
policy to form a full pipeline.
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Fig. 7. Qualitative Result in Simulation. We show the step-by-step results from the SfA pipeline. The inferred actions prioritize new parts discovery

and expose articulations. Our method outperforms the Ditto [17] on both parts reconstruction and joints estimation (revolute: red, prismatic: blue).

TABLE I

INTERACTION POLICY EVALUATION. THE INTERACTION POLICIES IS EVALUATED BY THE OPTIMAL ACTION RATIO = # OPTIMAL ACTIONS / # TOTAL
ACTIONS. AN ACTION IS OPTIMAL IF IT SUCCESSFULLY MOVES AN UNDISCOVERED PART.

Unseen Instances in Training Categories

Unseen Categories

) =
= i = E & ) ™
MY AL LSEcc§m | M
AtP [12] 00 250 00 500 200 250 00 200 0.0 0.0 | 200 00 200 200 200 200 0.0
UMP-Net [51] | 0.0 500 100 00 182 285 0.0 00 70.0 833 | 62 166 227 263 55 60 5.3
SfA 60.0 616 775 100 56.6 950 90.0 666 8.0 733 | 837 516 191 654 86.6 70.0 222
TABLE 1T

PART SEGMENTATION AND RECONSTRUCTION RESULTS. PERFORMANCE IS EVALUATED BY PART-WISE 3D IoU BETWEEN PREDICTED AND

GROUND TRUTH PART GEOMETRY. PERFORMANCE IS COMPARABLE ON BOTH UNSEEN INSTANCES AND UNSEEN CATEGORIES.

Unseen Instances in Training Categories Unseen Categories
— [ T e B () (V] a
MYy AmBOLT Ll EREac-Sm | M
SfA-Percep + GT-Act* | 79.5 79.6 925 946 912 947 823 873 734 804|715 879 922 864 929 838 787
Ditto[17]1+UMP-Act[51] | 30.9 37.0 438 403 52.1 36.6 408 447 437 425|522 373 307 417 521 393 300
Ditto[17]+SfA-Act 244 404 482 43,6 360 666 434 508 705 525|540 412 33.0 421 609 366 314
SfA-NoHistory 488 759 86.1 824 66.1 898 684 867 646 875|956 698 49.6 627 839 721 43.6
SfA 715 70.1 931 87.0 689 922 616 852 750 957 | 89.1 788 49.1 586 853 670 493




TABLE IV
JOINT EVALUATION. THE QUALITY OF JOINT ESTIMATION IS EVALUATED BY 1) CLASSIFICATION ACCURACY BETWEEN PRISMATIC AND REVOLUTE
JOINT CATEGORIES (MACC), 2) AXIS ROTATION ERROR IN DEGREE, 3) AXIS POSITION ERROR IN NORMALIZED SCALE (REVOLUTE JOINT ONLY).
DITTO 1S EVALUATED WITH SFA INFERRED ACTIONS.

Revolute joint Prismatic joint
Unseen Instances in Training Categories Unseen Categories Unseen Ins. | Unseen Cat.| Type
. = . = MR
= [ ] 1 E= D | = == =]
i B2 B A DmMESQo- /| QH & B T ..
| Rotation error (in degree) | |
Heuristic [40.0 89.8 75.1 89.2 154 104 47.8 59.64 9.17 |81.7 40.5 88.3 84.8 89.2 79.4|56.8 859 [81.9 69.7 | 52.7
Ditto [17][0.83 0.82 12.7 3.17 15.6 32.8 0.36 75.83 89.63]0.76 3.02 1.20 8.08 2.98 35.6|85.4 3.63 [2.93 1.27 | 68.9
SfA 0.39 0.79 11.43 1.02 542 8.61 044 211 3.72 |049 3.74 1.77 7.52 1.94 353|149 0.27 [2.82 3.34 | 86.7
‘ Position error for revolute joint (in normalized scale) | ‘
Heuristic [0.79 0.76 0.71 0.51 0.67 0.46 0.65 0.57 0.48 [0.82 0.67 0.76 1.17 0.73 0.42
Ditto [17]]0.22 0.61 0.19 0.37 0.14 023 0.25 0.32 0.44 [0.34 0.39 0.13 0.77 0.46 1.05
SfA 0.06 0.12 0.03 0.26 0.24 0.07 0.07 0.01 0.05 |0.04 0.05 0.17 0.41 0.13 0.41
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Fig. 8. IoU w.r.t steps. SfA can better discover parts with sequential in-

teractions compared to single-step baseline [Ditto+SfA-Act][17]., especially
on multi-part objects such as furniture. SfA can discover the full structure
of two-part objects in one interaction step.

o Heuristic: Heuristic baseline for joint inference with ICP.
Details can be found in Supp.

o AtP [12]: has both interaction and perception module,
however, considers only 2D sequential action and 2D
part segmentation.

« NoHistory: to evaluate the perception module’s perfor-
mance when multi-step parts aggregation is not used for
interaction and perception.

A. Experimental Results

Comparison with baselines SfA goes beyond combining
state-of-the-art components; Tab. 2 illustrates this empiri-
cally. SfA, on average, outperforms the combination of ex-
isting interaction and perception modules (Ditto+UMP-Act)
by over 25 percentage points on the 3D reconstruction task
with unseen objects. We conjecture the superior performance
of SfA over the competing approach is due to BLAH BLAH,
which the baseline is not able to properly exploit.

Generalization to unseen objects and categories. Our
method makes no category-level assumptions, and allows
it to generalize across categories. Tab. II, III, IV, show
that SfA is able to achieve similar performance on unseen
categories when compared to training categories, and outper-
forms alternative methods for the majority of the categories.
Specifically, SfA interaction model beats the closest baseline
by about 8 percent on the unseen categories. For objects

with novel kinematics structures such as glasses, the pipeline
performance is slightly worse than categories such as mi-
crowave, but still outperforms the best competing methods
by 16% in the mloU evaluation as seen in Tab III.

Are 3D actions necessary? Observing AtP’s performance
in Tab. II, we see that while 2D action space is sufficient for
simple objects like scissors, it is not effective for complex
objects with different joint types, and results in close to
zero effective actions for many object categories. AtP’s
performance drops considerably when the object is not planar
(e.g., kitchen pots). The structure of such objects cannot be
observed from the top-down view. In contrast, our interaction
policy is able to effectively infer informative 3D actions for
a wide variety of objects. Furthermore, we also compare
extensively against baselines that employ 3D continuous
action spaces. Specifically, we compare to baselines that
employ UMP-Net (see Tab.II and Tab.III). SfA outperforms
the 3D action space baselines in nearly all categories for
action inference and parts segmentation.

Does sequential interaction help? Based on the results in
Fig. 8, we can observe that our method can not only discover
new parts, but also segment parts better than Ditto [17],
a single-step interaction baseline as well as our ablated
SfA-NoHistory baseline. The improvement is more salient
for objects with more than two parts (e.g., furniture and
refrigerators). Comparing SfA and SfA-Percep + GT-Act in
Tab. III, SfA outperformed the model with GT interactions.
This result indicates that for those object categories, the
inferred actions from SfA is effective in revealing all parts of
the object, the discrepancies in IoU are due to inaccuracies
in the perception module inference.

Does history aggregation help? By using informative inter-
actions and aggregating visual observations in 3D, SfA could
reveal and track the surfaces that are initially occluded and
thereby better reconstruct the part geometry (e.g., the inside
of a closed drawer). Comparing SfA and SfA-NoHistory
in Tab. III, we can see that for most categories, action
inference with parts labels and multi-step part aggregation
outperforms the ablated baseline. The major advantage of



SfA over SfA-NoHistory is when objects have more than
three parts, which helps contextualize the similar results for
many objects that have two parts. In certain two-part object
categories, the NoHistory baseline beats SfA This might be
caused by the accumulation of perception errors in the multi-
step part aggregation process.

Generalization to real-world observations. To validate
the generalization of our approach to real-world data, we
implement a capture pipeline that uses a 6DoF robot arm
with a wrist-mounted camera to capture registered RGBD
images of real-world articulated objects. For interactions,
we allow a human to move parts. Fig. 6 demonstrates part
and joint discovery and part tracking. This results validate
the feasibility of our perception module (decoupled from
the interaction module) is able to recover CAD models
from real world RGB-D observations. See the video in the
supplementary for examples.

Limitation and assumptions. Our pipeline assumes that
only one joint is activated at each interaction step. While
this assumption is mainly satisfied by our learned interaction
policy (with both hold and push action), there are still cases
violating this assumption. Additionally our algorithm does
not estimate parameters like friction, which can be useful
for robot manipulation.

V. CONCLUSION

We present SfA, a learning framework that discovers 3D
parts geometry and joint parameters of novel articulated
objects through a sequence of inferred interactions. Our
results show that by coupling interactions and perception,
the model can discover and reconstruct 3D articulated CAD
models of objects from novel categories and with unknown
kinematic structures. These results substantiate SfA’s poten-
tial to enable robots to interact and reconstruct 3D articulated
CAD models of unknown articulated objects autonomously.
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